3,849 research outputs found

    The exclusive Drell-Yan process and deeply virtual pion production

    Full text link
    In this talk it is reported on analyses of l p -> l pi+ n and pi- p -> l+ l- n within the handbag approach. It is argued that recent measurements of hard pion production performed by HERMES and CLAS clearly indicate the occurrence of strong contributions from transversely polarized photons. The gamma*T -> pi transitions are described by the transversity GPDs accompanied by twist-3 pion wave functions. The experiments also require strong contributions from the pion pole which can be modeled as a classical one-pion exchange. With these extensions the handbag approach leads to results on cross sections and spin asymmetries in fair agreement with experiment. This approach is also used for an estimate of the partial cross sections for the exclusive Drell-Yan process.Comment: 8 pages, 6 figures, latex with style files jpsj-suppl.cls and cite.sty invited talk presented at MENU2016, Kyoto (Japan), July 2016. arXiv admin note: substantial text overlap with arXiv:1602.0380

    Disorder-driven splitting of the conductance peak at the Dirac point in graphene

    Full text link
    The electronic properties of a bricklayer model, which shares the same topology as the hexagonal lattice of graphene, are investigated numerically. We study the influence of random magnetic-field disorder in addition to a strong perpendicular magnetic field. We found a disorder-driven splitting of the longitudinal conductance peak within the narrow lowest Landau band near the Dirac point. The energy splitting follows a relation which is proportional to the square root of the magnetic field and linear in the disorder strength. We calculate the scale invariant peaks of the two-terminal conductance and obtain the critical exponents as well as the multifractal properties of the chiral and quantum Hall states. We found approximate values ν≈2.5\nu\approx 2.5 for the quantum Hall states, but ν=0.33±0.1\nu=0.33\pm 0.1 for the divergence of the correlation length of the chiral state at E=0 in the presence of a strong magnetic field. Within the central n=0n=0 Landau band, the multifractal properties of both the chiral and the split quantum Hall states are the same, showing a parabolic f[α(s)]f[\alpha(s)] distribution with α(0)=2.27±0.02\alpha(0)=2.27\pm 0.02. In the absence of the constant magnetic field, the chiral critical state is determined by α(0)=2.14±0.02\alpha(0)=2.14\pm 0.02

    Naive time-reversal odd phenomena in semi-inclusive deep-inelastic scattering from light-cone constituent quark models

    Full text link
    We present results for leading-twist azimuthal asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to naively time-reversal odd transverse-momentum dependent parton distribution functions from the light-cone constituent quark model. We carefully discuss the range of applicability of the model, especially with regard to positivity constraints and evolution effects. We find good agreement with available experimental data from COMPASS and HERMES, and present predictions to be tested in forthcoming experiments at Jefferson Lab.Comment: 10 pages, 7 figures, discussion of evolution effects extended, to appear in Phys.Rev.

    Pion mass dependence of the nucleon mass in the chiral quark soliton model

    Get PDF
    The dependence of the nucleon mass on the mass of the pion is studied in the framework of the chiral quark-soliton model. A remarkable agreement is observed with lattice data from recent full dynamical simulations. The possibility and limitations to use the model results as a guideline for the chiral extrapolation of lattice data are discussed.Comment: 14 pages, 12 figures, 4 tables. v2: References added, new figure included, discussion improved, typos fixed, matches published versio

    A shallow water model for magnetohydrodynamic flows with turbulent Hartmann layers

    Get PDF
    We establish a shallow water model for flows of electrically conducting fluids in homogeneous static magnetic fields that are confined between two parallel planes where turbulent Hartmann layers are present. This is achieved by modelling the wall shear stress in these layers using the Prandtl's mixing length model, as did the authors of Albousssi\`ere \& Lingwood (Phys. Fluids, 2000). The idea for this new model arose from the failure of previous shallow water models that assumed a laminar Hartmann layer to recover the correct amount of dissipation found in some regimes of the MATUR experiment. This experiment, conducted by the authors of Messadek \& Moreau (J. Fluid Mech. 2002), consisted of a thin layer of mercury electrically driven in differential rotation in a transverse magnetic field. Numerical Simulations of our new model in the configuration of this experiment allowed us to recover experimental values of both the global angular momentum and the local velocity up to a few percent when the Hartmann layer was in a sufficiently well developed turbulent state. We thus provide an evidence that the unexplained level of dissipation observed in MATUR in these specific regimes was caused by turbulence in the Hartmann layers. A parametric analysis of the flow, made possible by the simplicity of our model, also revealed that turbulent friction in the Hartmann layer prevented quasi-2D turbulence from becoming more intense and limited the size of the large scales

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2−D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent ν=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    Intrinsic transverse parton momenta in deeply inelastic reactions

    Full text link
    Intrinsic transverse parton momenta pT play an important role in the understanding of azimuthal/spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) and the Drell-Yan process (DY). We review and update what is presently known about pT from these processes. In particular, we address the question to which extent data support the popular Gauss model for the pT-distributions. We find that the Gauss model works very well, and observe that the intrinsic transverse momenta in SIDIS and DY are compatible, which is a support for the factorization approach. As a byproduct we recover a simple but practical way of taking into account the energy dependence of pT-distributions.Comment: 19 pages, 11 figure

    Non-equilibrium dynamics of an active colloidal "chucker"

    Full text link
    We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal particle which emits smaller solute particles from its surface, isotropically and at a constant rate k_c. We find that the diffusion constant of the chucker increases for small k_c, as recently predicted theoretically. At large k_c the chucker diffuses more slowly due to crowding effects. We compare our simulation results to those of a "point particle" Langevin dynamics scheme in which the solute concentration field is calculated analytically, and in which hydrodynamic effects can be included albeit in an approximate way. By simulating the dragging of a chucker, we obtain an estimate of its apparent mobility coefficient which violates the fluctuation-dissipation theorem. We also characterise the probability density profile for a chucker which sediments onto a surface which either repels or absorbs the solute particles, and find that the steady state distributions are very different in the two cases. Our simulations are inspired by the biological example of exopolysaccharide-producing bacteria, as well as by recent experimental, simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
    • …
    corecore